

GREAT WESTERN HIGHWAY HUNTINGWOOD NSW - EXISTING ADVERTISING SIGNS - STRUCTURAL ASSESSMENT

Structural Assessment

Structural Consulting Engineering Services

Prepared for oOh! Media Operations Pty Ltd

Prepared by JMP Consulting Engineers

			PREPAR	ED BY	PROJECT	LEADER	DESIGN	REVIEWER
REV	DATE	STATUS	INIT	SIGN	INIT	SIGN	INIT	SIGN
A	22/03/2024	For Information	EVL		EVL		MB	

Table of Contents

Introduction	3
Description	4
Design Methodology and Design Parameters	5
Summary of Results	6
Site Location	7
Existing Structure Geometry and Sizes	8
Signage Weight and Wind Loading	9
Serviceability Assessment1	0
Strength Assessment	1
Appendices1	2
Appendix 1 Point Cloud Survey Report	2
Appendix 2 Structural Condition Report1	3

This document contains commercial information which has been prepared for the attention of the Client on this project. It is confidential and no information contained in this document shall be released in part or whole to any third party without the approval of John Mullen & Partners Pty Ltd.

Introduction

This report has been commissioned by oOh! Media for JMP to appraise the structural design and strength of the existing advertising signage structure on the southern side of the Great Western Highway, Huntingwood, NSW.

The purpose of this appraisal is to evaluate the structure for compliance as part of the oOh! Media development application to the Department of Planning, Housing and infrastructure (DPHI) in NSW. DPHI requested oOh! Media to confirm that the specifications of the original structural design of the sign is compliant with current Design Standards and whether the "as built" structure conforms to the current relevant standards to be undertaken by a suitably registered structural engineer.

Our appraisal has been based upon information provided in the form of cloud point survey result, photos, and a Structural Condition Report included within Appendix 1 and Appendix 2 respectively.

This report is not intended to be a dilapidation survey of the condition of the existing steel structure and that JMP have not witnessed the structure in person.

We have excluded from the appraisal fitness for purpose aspects as well as OH & S, and maintenance access provisions, for conformance with the current BCA/NCC or other relevant Australian Standards.

This report has been prepared by a Qualified Structural Engineer.

Description

The signage structure is commonly referred to as a double-sided "V" shaped front-lit "Supersite" monopole having a nominal display size of 12,660mm long x 3,350mm high.

The signage structure comprises a freestanding galvanised monopole with a bolted connection for attaching a galvanized torsion beam. A series of trussed frames, six in total, are attached to the top of the torsional beam. The main top, bottom, and vertical truss frame members are fully welded to each other while the diagonal members are connected to the top and bottom with bolts. The trussed frames comprise of steel channels and steel circular hollow section members for bracing.

The structural steel framed V-shape sign has upper and lower maintenance access catwalks on each side which provide the sign installers access to the top and bottom of the sign for each face.

The monopole is connected to a 1250mm X 1250mm pilaster with bolts. Unfortunately, there are no records of footing size.

The signage was built on 2001 as per the client's record.

Design Methodology and Design Parameters

This report details the structural assessment of the existing steel framed box sign structure supporting the static screen for the Ultimate Limit State and Serviceability Limit State Loading Cases.

Wind loading used in the assessment is as per AS1170.2:2021 with the appropriate factors and wind speed particular for the region.

The weight of the advertising fixed banner skin, 12.66m x 3.35m applied on the structure is 15kgs each side. This load is equivalent to 0.35kg /m^2. Other accessories such as access catwalks are added as super imposed dead loads on the structure. Live loads on the walkways are also considered in accordance with AS1657.

There are no available existing drawings for this signage. A 3D laser scanning of the signage was conducted to get the profile and sizes of the steel framing existing signage structure.

The wall thickness of the CHS Column and torsional beam are unknown. The thickness considered in the design is 12.7mm for the torsional beam and 12mm for the columns. These values were based on the other sites which have the same framing layout and member sizes.

The design evaluation of the signage framing members was undertaken using Space Gass and Toolkit software. Steel member connections were evaluated using in-house design procedures using simplified methods.

There is no information about the existing footing however, assessment was made by investigation of the historical changes to Australian wind loading standards over the years.

Steel Parameters

E = 200,000 MPa

Yield strength of plates = 300 MPa

Yield strength of hollow sections = 350 MPa

Yield strength of all other members = 250 MPa

Weld yield strength = 480 MPa

Design Codes and References

AS/NZS 1170.0:2002 Structural Design Actions - Part 0: General Principles.

AS/NZS 1170.1:2002 Structural Design Actions – Part 1: Permanent, Imposed, and other actions.

AS/NZS 1170.2:2021 Structural Design Actions – Part 2: Wind Loads.

AS1657:2018 Fixed Platforms, Walkways, Stairways and Ladders – Design, Construction and Installation.

AS2312.1:2014 Guide to the Protection of Structural Steel against Atmospheric Corrosion by the Use of Protective Coatings.

AS4100:2020 Steel Structures

AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals.

Load Combinations

Load Combinations are based on the requirements of AS1170.0. Refer to Space Gass Input (Section D.2) for load combinations used in this assessment.

Summary of Results

Based upon our analysis, we have found that all steel members are adequate for Ultimate Limit State Load Case.

All steel connections depicted in the photos are adequate to resist the design forces.

All predicted displacements of the frame are within the normal industry-accepted Serviceability Limit State specified in AS1170.0.

The structure was designed in the year 2000. The loads were based on Australian Standard AS/NZS 1170.2: 1989. The original wind load is higher compared to the current Standard. Therefore we can conclude that the existing footing has sufficient strength to resist the current loads.

Those recommendations nominated in the structural conditions report prepared by Arcadis should be implemented in the short term to prolong the longevity of the structure and be more serviceable.

The above-mentioned results and implementation of the recommendations ensure the structural viability of the signage structure and compliance with relevant Building Code of Australia (BCA) requirements and Australian Standards.

Rev: A 22/03/2024

Site Location

A SPECIALIST PRACTICE HUNTINGWOOD, GREAT WESTERN HIGHWAY -EXISTING ADVERTISING SIGNAGE STRUCTURE Project: COMPUTATION SHEET Date: 18.03.2024 Project No: 4981 01 Designer: **EL** Level 7, 400 Collins Street Melbourne 3000 Date: 20.03.2024 Sheet of Reviewer: MB Telephone (03) 9600 0366 Project Leader: EL jmpmelb@jmp.com.au reat Western Hwy Great Western Hwy SITE (APPROXIMATE LOCATION) **AERIAL VIEW** SCALE: NOT TO SCALE

Existing Structure Geometry and Sizes

A SPECIALIST PRACTICE

HUNTINGWOOD, GREAT WESTERN HIGHWAY -EXISTING ADVERTISING SIGNAGE STRUCTURE Project: COMPUTATION SHEET Date: 18.03.2024 Project No: 4981 01 Designer: EL Level 7, 400 Collins Street Melbourne 3000 Date: 20.03.2024 Sheet MB Project Leader: EL Telephone (03) 9600 0366 Reviewer: of jmpmelb@jmp.com.au FROM POINT CLOUD SURVEY **ISOMETRIC VIEW**

A SPECIALIST PRACTICE

HUNTINGWOOD, GREAT WESTERN HIGHWAY -Project: EXISTING ADVERTISING SIGNAGE STRUCTURE COMPUTATION SHEET Date: 18.03.2024 Designer: Project No: 4981 01 EL Level 7, 400 Collins Street Melbourne 3000 Date: 20.03.2024 Sheet Telephone (03) 9600 0366 MB Project Leader: EL Reviewer: of jmpmelb@jmp.com.au 3855 SIGN FACE B EXISTING ADVERTISEING SIGNAGE PLAN 1 ACE) TOP SIGN PAN

A SPECIALIST PRACTICE

COMPUTATION SHEET

HUNTINGWOOD, GREAT WESTERN HIGHWAY -Project:EXISTING ADVERTISING SIGNAGE STRUCTURE

A SPECIALIST PRACTICE

COMPUTATION SHEET

HUNTINGWOOD, GREAT WESTERN HIGHWAY -Project: EXISTING ADVERTISING SIGNAGE STRUCTURE

Designer:	EL						Dat	e:	18.	03	.20	24		F	Proje	ect l	No:	49	81	01								Level	l 7, 40	IO Coll	ins S	treet
Project Lea	ader:	E	L				Rev	view	er:	Μ	B			[)ate	.20).0:	3.2	02	4	She	eet		of				Tele jr	hone phone	4elbo ≥ (03) 9 Ib@jm	urne 9600 np.com	3000 0366 m.au
																									1							
									EXI	STIN	IG S	IGN	AGE	E - S	TEE	LΒ	EAN	I SC	HED	DULI	E					_						
					MA	RK		S	IZE			Fam	ily a	nd 1	уре					RE	MA	RKS										
					B1	1	_				BMU	B: 180)x90x	13mn	1																	
					B4	5 1	+				BM U	B: 17)x90x	120x3	<u>ווווו</u> ו																	
					B5	5					BM P	FC: 14	45x80	x10m	m																	
					B	3	\square				BM U	B: 14	5x145	x13m	m														-			_
				\vdash	B1	U 1	+				BW 6	HS: 5	Ux75x	3.0Rl	15										-							
				\vdash	B1	2	+				BM P	FC: 1	50x80	x10m	m										 1							
					DB	1					BM S	HS: 7	5x75x	3mm																		
					DB	2					BM S	HS: 5	0x75x	3mm																		
					DB	3 21	_				BM C	HS: (2 FC: 8	070x5 0x40x	mm 10mn	1																	
				\vdash	RA	.1	+				BM L	-Angle	e: 40x	40x3r	' nm																	
					S1	1					BM L	-Angle	e: 75x	75x3r	nm]							
																																_
		1			1	1	1	1			I			1		I	1				1	1	1				1					
			Γ						FX	ISTI	NG	SIGN	JAG	F - 9	STEI		:011	IMN	SCI	HED		-										
			┢	М	ARK	(SIZ	F			F	amil	v an	d Tv	ne	020				011	- RFN	/AR	KS		_						
			┢		SC1			0.2		+			anni	y an	<u>a 1</u>	<u>, , , , , , , , , , , , , , , , , , , </u>									 	_						
										70		450.0	0.40	250																		
			⊢		SC2						PFC:	150x8	0x10	PEC											 	_						
					SC5					CL	SHS:	45x45	5x8mn	1																		
					SC6					CL	SHS:	50x50)x8mn	ı															<u> </u>			
			L		SC7					CL	RHS:	50x10)0x3m	IM											 							
																																_
	\vdash																				-											_
																														$\left - \right $		
	\vdash						-																									
																													ļ			
																													-			_

SPACE GASS 14.12 (64-bit) - JOHN MULLEN & PARTNERS PTY LTD
Path: Z:___Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 2:22 PM, Page: 1

Signage Weight and Wind Loading

A SPECIALIST PRACTICE

HUNTINGWOOD, GREAT WESTERN HIGHWAY -EXISTING ADVERTISING SIGNAGE STRUCTURE Project: COMPUTATION SHEET Date: 18.03.2024 Project No: 4981 01 Designer: EL Level 7, 400 Collins Street Melbourne 3000 MB Date: 20.03.2024 Sheet Telephone (03) 9600 0366 Project Leader: EL Reviewer: of jmpmelb@jmp.com.au 12654 B11 TOP SIGN PAN ∕∖ Stille 812101 812101 81210 850 8 rel 600 B11 2889 OR 10 So RA1 å 50 SC2 B11 SC2 RA1 650 B10 02110 BTM SIGN P ŧ ŧ 81210 **B1** 8121 8/21 8121 812 1439 1865 1864 2252 1871 50 BASE LEVEN WEIGHT OF SUPERSITE STATIC SCREEN = 0.035KN/m^2 STEEL WEIGHT DENSITY =7,800 KG/M PLATFORM LIVE LOAD=2.5kPa **REFER SPACEGASS OUTPUT.**

A SPECIALIST PRACTICE

of

COMPUTATION SHEET

HUNTINGWOOD, GREAT WESTERN HIGHWAY -Project: EXISTING ADVERTISING SIGNAGE STRUCTURE

Date: 18.03.2024 Designer: EL Project No: 4981 01 Date:20.03.2024 Sheet $_{\text{Reviewer:}} \ \textbf{MB}$ Project Leader: EL

Level 7, 400 Collins Street Melbourne 3000 Telephone (03) 9600 0366 jmpmelb@jmp.com.au

Wind Actions

Wind Loads shall be calculated in accordance with AS1170.2:2021 Structural design actions -Wind Actions as specified below.

Parameters	ULS (1/500)	SLS (1/25)
Importance Level	IL2	
Wind Region	A2 (Sydney)	
Regional Gust Wind Speed, Vr	45 m/s	37 m/s
Terrain category	2	
Terrain/height multiplier, Mz.cat	As per Table 4.1 of AS/NZS	1170.2
Directional multiplier, Ma	As per Table 3.2 of AS/NZS	1170.2
Shielding multiplier, M₅	1.0	
Topographic multiplier, Mt	1.0	
Net pressure coefficient, CRO	As per Table B.2 of AS/NZS	1170.2
Net porosity factor, Kg	1.0	
Aerodynamic shape factor, Cabe	CR. × KR	

JOHN MULLEN & PARTNERS \mathbf{M}

Р

Assessment of Existing Signage

Great Western Highway, Huntingwood, NSW Oohh Media

A SPECIALIST PRACTICE

Project No.: 4981 01 Designed: EVL

Page:

Wind Analysis WA01

JMP

WIND V5.03

Design:	(Wind Analysis WA01) Sydney, Non-temporary structure
Importance:	All other structures not included in 1,3 or 4, Life = 50 years, Non-Cyclonic, APE = 500 years, APE.Serv = 25 years
Pressures:	Wu.max = 1.14kPa, Ws/Wu =0.68

Location - Fig 3.1(A), 3.1(B)

	Location = Sydne	у				
	Region =	А	Figure 3.1(A)			
	Sub region =	2	Figure 3.1(A)			
	Cyclonic =	N (Y)es, (N)o	Table 3.2(A)			
Importance	All other structures n	ot included in 1,3 or 4				
		Importance level =	- 2	1,2,3,4,(C)	ustom	
		Design working life =	50	Years		
	Annual prob. o	f exceedance (APE) = 1/	500	years	AS1170.0 - Table F2	
	Annual prob. of ex	ceed. Serv. (APE.s) = 1/	25	years	AS1170.0 - Appendix C	
Design wind s	peed (Vdes,q) - Cl 2.3					
	Ultimate reg	ional wind speed (VR) =	45	m/s	For a 1/500 APE - Table 3.1	
	Serv. regio	onal wind speed (VR.s) =	37	m/s	For a 1/25 APE.s - Table 3.1	
	Climate	change multiplier(Mc) =	1.00	Table 3.3		
	Minimum ul	timate speed (Vdes,θ) =	: 30	m/s - Cl 2.3	3	
		Ratio VR.s / VR =	0.82			
		Ratio Ws / Wu =	0.68			

Design wind data for non-cyclonic areas with APE of 1:500 years

Dir (b)	Vdes,θ	Wu	Ws	Dir (b)	Vdes.θ	Wu
	m/s	kPa	kPa		m/s	kPa
Ν	41.5	1.03	0.70	NE	37.1	0.83
S	41.5	1.03	0.70	SW	43.7	1.14
E	41.5	1.03	0.70	SE	41.5	1.03
w	43.7	1.14	0.77	NW	43.7	1.14

Site wind data for non-cyclonic areas with APE of 1:500 years

Dir (b)	Md (*1)	VR*Mc*Md	Ave. Ht (z)	Cat	Mz.cat	Ms	Mt	Vsit.ß	Wu.sit
2 (2)		m/s	m					m/s	kPa
N	0.85	38.3	10.4	2.2	0.97	1.00	1.00	37.1	0.83
NE	0.75	33.8	10.4	2.2	0.97	1.00	1.00	32.7	0.64
E	0.85	38.3	10.4	2.2	0.97	1.00	1.00	37.1	0.83
SE	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03
S	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03
SW	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03
w	1.00	45.0	10.4	2.2	0.97	1.00	1.00	43.7	1.14
NW	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03

*1 - Refer to Table 3.2 and Cl 3.3, TC interpolated

Р

Assessment of Existing Signage

Great Western Highway, Huntingwood, NSW Oohh Media

A SPECIALIST PRACTICE

Page: Project No.: 4981 01 Designed: EVL

Hoarding H01

IMP

HOARDINGS V5.01

Member:	(Hoarding H01) 12.7m wide x 3.4m high, 10.4n	n to top (7.1m gap under)	
Normal:	Cp,n = 1.51		
Wind at θ=45:	Cp,n = 1.51		
Wind at θ =90:	Cp,n = ±1.2 - 0 to 2c, ±0.6 - 2c to 4c, then ±0.3		
Freestanding ho	ardings and walls - Appendix B.2		
			b
	Breadth (b) =	12660 mm	
	Element height (c) =	3350 mm	
	Total height (h) =	10400 mm	с
	Batio(b/c) =	3 78	h h
	Ratio (c/h) =	0.32	
			*
	Aerodynamic shape factor (Cshp) = C	p,n*Kp Equ B.2	
	Cp,n = N	et pressure coefficient - Cl B.2.1	
	Kp = N	et porosity factor - Cl B.1.4	
Wind normal to	hoarding or wall θ = 0° - Table B.2(A)		
	Ratio $(b/c) =$	3.78	
	Ratio (c/h) =	0.32	
	Cp,n = 1.3 + 0.5(0.3+log10(b/c))*(0.8-c/h) =	1.51	
	Vertical height of resultant (h-c/2) =	8725 mm above the surfac	e
	Horizontal eccentricity of resultant (e = 0) =	0 mm (No eccentricity)	
Wind at $A = 45^{\circ}$	to boarding or wall - Table B 2(B) & B 2(C)		
Wind dt 0 - 45			
	Ratio (b/c) =	3.78	
	Ratio (c/h) =	0.32	
	Cp,n = 1.3 + 0.5(0.3+log10(b/c))*(0.8-c/h) =	1.51	
	Vertical height of resultant (h-c/2) =	8725 mm above the surfac	e
Н	orizontal eccentricity of resultant (e = 0.2*b) =	2532 mm	
	From Table B.2(B)	
Wind parallel to	hoarding or wall θ = 90° - Table B.2(D)		
	Batio (b/c) =	3 78	
	Batio (c/b) =	0.32	
		0.52	
	Cp,n = ±	<mark>l.2 - 0 to 2c, ±</mark> 0.6 - 2c to 4c, then ±0	0.3
Net porosity fac	tor - B.1.4		
		_	
	Solidity factor (δ) =	1.000 ratio of solid area to t	total area of structure
	Net porosity factor Kp = $1-(1-\delta)^2$ =	1.000	

A SPECIALIST PRACTICE

HUNTINGWOOD, GREAT WESTERN HIGHWAY -Project: EXISTING ADVERTISING SIGNAGE STRUCTURE COMPUTATION SHEET Date: 18.03.2024 EL Project No: 4981 01 Designer: Level 7, 400 Collins Street Melbourne 3000 MB Date: 20.03.2024 Sheet Telephone (03) 9600 0366 Project Leader: EL Reviewer: of jmpmelb@jmp.com.au wu= 1.14kPa wu= 1.03kPa ws = 0.77 kPawu= 0.83kPa ws= 0.70kPa SC2 (o) ରି । = 0.53kPa ws NW 812 Ν & NE 500 DIA. CHS BEAM SC2 (O) 812 ŝ 502 (o) 812 wu= 1.03kPa wu = 1.14 kPa2655 ws= 0.70kPa ws= 0.77kPa B12 810 F W-SIGN FACE B KN FACEA SW SE wu= 1.14kPa B3 OR1wu= 1.03kPa ws= 0.77kPa ws= 0.70kPa wu= 1.03kPa ws= 0.70kPa

A SPECIALIST PRACTICE

PRINCESS HIGHWAY, HEATCOTE- EXISTING ADVERTISING SIGNAGE STRUCTURE COMPUTATION SHEET Project: Date: 28.02.2024 Project No: 4980 01 Designer: EL Level 7, 400 Collins Street Melbourne 3000 Reviewer: MB Date: 28.02.2024 Sheet Telephone (03) 9600 0366 Project Leader: EL of jmpmelb@jmp.com.au WIND PRESSURES ON THE SIGNAGE STRUCTURE ARE CALCULATED AS FOLLOWS: W = wu x CshpOPTION 1-CONSIDER AS HOARDING. FOR WESTERLY/EASTERLY WIND: Cshp = 1.51HENCE. WIND PRESSURE = 1.14 kPa x 1.51 = 1.72kPa THE OVERALL DIMENSIONS OF THE SIGNAGE ARE APPROX. 12.66m LONG x 3.35m HIGH EACH SIDE THEREFORE WIND LOADING TOP HOR MEMBER= 1.72 kPa x 1.3 = 2.24 kN/m MIDDLE HOR MEMBER = 1.72 x 1.0 = 1.72 kN/m BOTTOM HOR MEMBER =1.72 x 0.90 =1.55kN/m FOR NORTHERLY AND SOUTHERLY WIND: Cshp = 2.0HENCE, WIND PRESSURE = 1.72 kPa x 2.0 = 3.44 kPa THIS DIRECTION IS NOT CRITICAL. THE FRAMING IS OPEN. CONSIDER WIND ON THE POST =3.44x0.7= 2.41kN/m WIND ON FRAME (INT) =1x3.44 =3.44kN/m; EXT =1x0.5x3.44=1.72kN/m FOR WESTERLY/EASTERLY WIND: Cpe = 0.8; wu = 1.14kPa; Cpl = 0.3 **OPTION 2-CONSIDER AS ELEVATED STRUCTURE** THEREFORE WIND LOADING WEST WALL TOP HOR MEMBER= 1.14 kPa x(0.8+0.3)x1.3 = 1.63 kN/m MIDDLE HOR MEMBER =1.14 x(0.8+0.3)x 1.0 =1.254 kN/m BOTTOM HOR MEMBER =1.14x(0.8+0.3)x 0.90 =1.1286kN/m WIND LOADING EAST WALL TOP HOR MEMBER= 1.14 kPa x(0.5+0.3)x1.3 = -1.186 kN/m MIDDLE HOR MEMBER = 1.14 x(0.5+0.3)x 1.0 = -0.912 kN/m

BOTTOM HOR MEMBER =1.14x(0.5+0.3)x 0.90 =-0.82kN/m

SPACE GASS 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD Path: Z:_Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: Date: Wednesday, March 20, 2024 2:59 PM, Page: 1

SPACE GASS I4.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD
Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 3:02 PM, Page: 1

SPACE GASS T4.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD
Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 3:02 PM, Page: 1

SPACE GASS 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD
Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 3:03 PM, Page: 1

SPACE GASS 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD
Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 3:57 PM, Page: 1

Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: Date: Wednesday, March 20, 2024 3:57 PM, Page: 1 SPACE GASS 14.12 (64-bit) - JOHN MULLEN & PARTNERS PTY LTD

Load case 6

SPACE GASS 14.12 (64-bit) - JOHN MULLEN & PARTNERS PTY LTD
Path: Z:___Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 3:58 PM, Page: 1

Serviceability Assessment

SPACE GASS 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: Date: Wednesday, March 20, 2024 5:48 PM, Page: 1 Filter: Spine

Strength Assessment

SPACE Gamma Provide 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD
Path: Z:_ Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 5:50 PM, Page: 1

SPACE GASS PARTY IT (64-bit) - JOHN MULLEN && PARTNERS FTY LTD
Path: Z:__Projects\4981-01 Great Western ...\Computations\Model Huntingwood
Designer: Date: Wednesday, March 20, 2024 5:51 PM, Page: 1

SPACE GENALIT FRANTER SPACE GENALIT PROFILE (44-bit) - JOHN MULLEN && PARTNERS PTY LTD Path: Z:_ Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: Date: Wednesday, March 20, 2024 5:52 PM, Page: 1

SPACE GERMANT PRATTER SPACE GERS 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD Path: Z:_ Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: Date: Wednesday, March 20, 2024 5:58 PM, Page: 1

SPÂCE GASS 14.12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD Path: Z:___Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: Date: Wednesday, March 20, 2024 6:00 PM, Page: 1

M* = 833kN-m

16M36 4.6/S BOLTS

lþ.

001

₿Þ

 $T^{*}=C^{*} = 833/0.6 = 1388$ kN consider 6 bolts therefore 1388/6 = 231kN per bolts

Axial Tension capacity of M36 bolts 4.6/S = 261kN Shear Capacity = 151 kN By inspection, baseplate thickness is adequate. The stiffener helps to reduced the thickness required.

32 MPa (Must be Less than 65 MPa)		36	8				2005	NDa		
32 MPa (Must be less than 65 MPa) 165 mm 165 mm 1 = 1.3 if horizontal bar with more than 300mm of concrete cast below) 1 = 1.0 for all other bars 0.96 = 1.0 for all other bars 0.16 = 1.0 for all other bars 0.16 = 1.0 for all other bars 0.15 1044 151 > 1044 231 kN Min Bar area 577.5 mm² 709 mm		8	E			٨	nnc	ели		
50 mm 50 1 =1.3 fh horizontal bar with more than 300mm of concrete cast below) 0.96 = 1.0 for all other bars 231 kN Min Bar area 577.5 mm ² 0kay 0kay 20 mm		32	MPa	(Must be Les	s than 65	MPa)				
165 mm 167 mm 1 =1.3 fh horizontal bar with more than 300mm of concrete cast below) 0.96 = 1.0 for all other bars 0.156 > 1561 > 231 kn Min <bar area<="" td=""> 577.5 mm² 237 MPa 709 mm</bar>		50	mm							
1 = 1.3 if horizontal bar with more than 300mm of concrete cast below) 0.96 = 1.0 for all other bars 0.91 = 1.0 for all other bars 0.94 = 1.0 for all other bars 1561 2 1044 1561 2 1044 231 kN Min Bar area 577.5 mm² 227 MPa Okay 709 mm Min Bar area		165	mm							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	= 1.3 i = 1.0 fc	f horizontal ba or all other ba	ar with mo rs	ore than 30	0mm of c	oncrete ci	ast below	-
341667 2 1044 2 1044 1561 2 1044 2 2 231 kN Min Bararea 577.5 mm² 232 MPa Okay 0 709 mm 1 1		0.96								
1561 2 1044 231 kN Min Bararea 577.5 mm ² 237 MPa Okay 227 MPa Okay 709 mm	o	941667								
231 kN Min Bararea 577.5 mm² 231 kN Min Bararea 577.5 mm² 227 MPa Okay Okay 227 MPa Total mark Total mark 709 mm Total mark Total mark		1561	~	1044						
227 MPa Okay 709 mm		231	kN	Min B	ar area	577.5 m	m²			
227 MPa 227 MPa 709 mm						Okay				
400 mm		227	MPa							
		709	E							

SPÂCE GASS 14:12 (64-bit) - JOHN MULLEN && PARTNERS PTY LTD Path: Z:___Projects\4981-01 Great Western ...\Computations\Model Huntingwood Designer: ____Date: Wednesday, March 20, 2024 6:09 PM, Page: 1

Ø1000 BASE PLATE

Envelope = Load Cases 10,15,16 and Members 2 INTERMEDIATE FORCES AND MOMENTS (m, kN, kNm) (*=Maximum, #=Minimum)

00	tion				
Ę	ong.				
Mem	ber	FX	ΈY	FΖ	MX
0	00.	256.92*	*00.0	0.00#	0.01*
0	00.	104.38	0.00#	87.69*	-79.65#
0	. 60	103.56#	0.00	86.24	-79.65

Mz -257.91# -127.12 -126.92*

My 0.82* -153.91# -101.02

 15
 2
 0.00
 104.38
 0.00#
 87.69*

 15
 2
 0.00
 103.56#
 0.00
 86.24

 INTERMEDIATE DISPLACEMENTS (m.mm)
 (*=Maximum, #=Winimum)

	Local Z	Transl'n	-47.65	0.08*	-54.59#
	Local Y	Transl'n	-10.22*	-24.92#	-16.26
	Local X	Transl'n	-0.15*	-0.40#	-0.22
	Global Z	Transl'n	-47.65	0.08*	-54.59#
	Global Y	Transl'n	-0.15*	-0.40#	-0.22
	Global X	Transl'n	10.22#	24.92*	16.26
Position	Along	Member	00.00	0.60	0.60
		Member	0	0	0
		Case	15	10	16

 $M^* = 258kN-m$

 $T^{*}=C^{*} = 258/0.5 = 516$ kN consider 6 bolts therefore 516/6 = 86kN per bolts

Axial Tension capacity of M24 bolts 8.8/S = 234kN Shear Capacity = 133 kN

Bending on Cap plate = 86 x .070=6.02kN-m

t= 36mm fy=300 b=150 M =0.9 x (150x36^2/6*1000000) *300= 8.748kN-m OK!

A SPECIALIST PRACTICE

HUNTINGWOOD, GREAT WESTERN HIGHWAY COMPUTATION SHEET Project: EXISTING ADVERTISING SIGNAGE STRUCTURE COMPUTATION SHEET Designer: EL Date: 18.03.2024 Project No: 4981 01

Project Leader: EL Reviewer	MB	Date: 20.03.2024 Sheet	of	
------------------------------------	----	------------------------	----	--

Level 7, 400 Collins Street Melbourne 3000 Telephone (03) 9600 0366 jmpmelb@jmp.com.au

		3.2.2	Deriva	tion of des	ion oust win	d speed (V).			
		The de	sign ou	st wind snee	eds (V) shall	be determi	ined			
		from	from the appropriate basic wind speed shown in				incu in			
		Figure	$\frac{100}{2}$	or the energy	aprioto limit	state giver				
		Figure	3.2.21	or the appro	opriate minit	state giver	гбу			
		Equan	on 5.2.2	2.						
		· V _z	= V	$M_{(z,cat)}M_{s}M_{t}$	M_{i}	(3.	2.2) —			
		where		(2,041) 5 1	•		_			
		where								
		Vz	= t]	he design g	ust wind spe	ed at heigh	nt z,			
			11	n metres pe	r second					
		· V	= tl	he basic wir	nd speed, (V_u)), (V_p) and	(V_s)			
			(see Figure 3	3.2.2), in met	res per sec	ond			
		-		-		_				
		M _{(z,ca}	_{t)} =	a gust win	d speed mult	uplier for	a			
				terrain cat	tegory at he	eight z for	or			
		-		upwind d	distance of	at leas	st —			
		+		$(2500 + x_i)$	m (see also C	lause 3.2.0	5,			
				Tables 3.2.	.5.1 and $3.2.5$.2)				
		М	=	a shield	ing multir	olier (se	e			
		- ····s		Table 3.2.7	7)	(00				
		+		14010 0.2.7		6				
		M_{t}	=	a topograp	phic multipli	er for gu	st			
				wind speed	ls (see Table	3.2.8)				
		M.	=	a structure	e importance	multiplie	er			
				(see Table	3.2.9).					
								0021		
	•	1989					4			
	TA C	1989 BLE 3 2 5	1							
TERR	TA TA	1989 BLE 3.2.5 STRUCT	.1 URE HE	IGHT						
TERR	TA TA AIN AND LIERS FOI	1989 BLE 3.2.5 STRUCT R GUST V	.1 URE HEI VIND SPI	IGHT EEDS IN						
TERR MULTIPI FU	TA TA AIN AND LIERS FO LLY DEV E LIMIT	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A	.1 URE HE VIND SP TERRAI ND PERM	IGHT EEDS IN NS MISSIBLE						
TERF MULTIPI FU ULTIMAT STRESS D	TA AAIN AND LIERS FOI LLY DEV YE LIMIT DESIGN —	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION	.1 URE HEI VIND SPI TERRAI ND PERM S A AND	IGHT EEDS IN NS MISSIBLE) B ONLY		Ferrain/height mt	altipliers for gus regions	st wind speeds in except A0	n fully develope	d terrains
TERF MULTIPI FU ULTIMAT STRESS D SERVICE	TA TA AIN AND LIERS FOI LLY DEV E LIMIT DESIGN — CABILITY	BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S	.1 URE HEI VIND SPI TERRAI ND PERM S A AND FATE DE	IGHT EEDS IN NS MISSIBLE) B ONLY ESIGN —	Table 4.1 — '	ferrain/height mi	Iltipliers for gus regions	st wind speeds in except A0	n fully develope multiplier (Mz,cat	d terrains
TERB MULTIPI FU ULTIMAT STRESS D SERVICE	TA TA AAIN AND LIERS FOI LLY DEV E LIMIT DESIGN — CABILITY ALI	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION	.1 URE HEI VIND SPI TERRAI ND PERM S A AND FATE DE NS	IGHT EEDS IN NS MISSIBLE) B ONLY ESIGN —	Table 4.1 — 7	Ferrain/height m	altipliers for gus regions	st wind speeds in except A0 Terrain/height r Terrain	n fully develope multiplier (Mz,cat	d terrains
TERF MULTIPI FU ULTIMAT STRESS D SERVICH Height (z)	TA TA AAIN AND LIERS FOI LLY DEV E LIMIT EABILITY ALI	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multipliei	.1 URE HEI VIND SPI TERRAI ND PERN S A AND FATE DE NS $(M_{(c, cel)})$	IGHT EEDS IN NS MISSIBLE) B ONLY ESIGN —	Table 4.1 7	Terrain/height mu Terrain Category 1 0.97	Iltipliers for gus regions Terrain Category 2 0.91	st wind speeds in except A0 Terrain/height r Category 2.5 0.87	n fully develope multiplier (M _{z,cat} Terrain Category 3 0.83	d terrains
TERF MULTIPI FU ULTIMAT STRESS D SERVICF Height (2)	TA TA AAIN AND LIERS FOI LLY DEV E LIMIT DESIGN — CABILITY ALI	BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multipliei Terrain	.1 URE HEJ VIND SP TERRAI ND PERM S A AND FATE DF NS $(M_{(a, cal)})$ Terrain	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain	Table 4.1 7	Terrain/height mu Terrain Category 1 0.97 1.01	altipliers for gus regions Terrain Category 2 0.91 0.91	st wind speeds in except A0 Terrain/height r Category 2.5 0.87 0.87	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83	d terrains) Terra Catego 0.73 0.73
TERF MULTIPI FU ULTIMAT STRESS E SERVICE Height (z) m	TA TA AAIN AND JIERS FO LLY DEV E LIMIT DESIGN — CABILITY ALI Terrain Category 1	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multiplier Terrain Category 2	.1 URE HEJ VIND SP TERRAI ND PERM S A AND FATE DF NS • (M _{(c, cal}) Terrain Category 3	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain Category 4	Table 4.1 7 Height (2) (m) \$3 5 10	Terrain/height mu Terrain Category 1 0.97 1.01 1.08	altipliers for gus regions Category 2 0.91 0.91 1.00	st wind speeds in except A0 Terrain/height r Category 2.5 0.87 0.87 0.92	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83	d terrains) Catego 0.7? 0.7? 0.7?
TERR MULTIPI FU ULTIMAT STRESS I SERVICE Height (z) m 	TA TA AAIN AND JIERS FO LLY DEV 'E LIMIT DESIGN — CABILITY ALJ Terrain Category 1 0.99 1.05	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multipliet Terrain Category 2	J URE HEJ VIND SP TERRAI ND PERM S A AND FATE DF NS • (M _{(c, cal}) Terrain Category 3 0.75	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain Category 4 0.75	Table 4.1 7 	Terrain/height mu Terrain Category 1 0.97 1.01 1.08 1.12 1.14	Iltipliers for gus regions Category 2 0.91 0.91 1.00 1.05 1.08	st wind speeds in except A0 Terrain/height r Category 2.5 0.87 0.87 0.92 0.97 1.01	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.89 0.94	d terrains) Terra (Catego 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
TERR MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10	TA TA AAIN AND JIERS FOO LLY DEV 'E LIMIT DESIGN — CABILITY ALI Terrain Category 1 0.99 1.05 1.12	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multipliet Terrain Category 2 0.85 0.91 1.00	J URE HEJ VIND SP TERRAI ND PERM S C (M _{(z, cal})) Terrain Category 3 0.75 0.75 0.83	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain Category 4 0.75 0.75 0.75	Table 4.1 7 Height (2) (m) ≤ 3 5 10 15 20 30	Terrain Category 1 0.97 1.01 1.08 1.12 1.14	Iltipliers for gus regions Category 2 0.91 0.91 1.00 1.05 1.08 1.12	st wind speeds in except A0 Terrain Category 2.5 0.87 0.87 0.97 0.97 1.01 1.00	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.89 0.94 1.00	d terrains) Terra (Catego 0.7! 0.7? 0.7? 0.7? 0.7? 0.88
TERR MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15	TA TA AAIN AND JIERS FOO ILLY DEV 'E LIMIT CABILITY ALI Terrain Category 1 0.99 1.05 1.12 1.16	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multiplier Terrain Category 2 0.85 0.91 1.00 1.05	.1 URE HEJ VIND SPI TERRAI ND PERM S A AND ΓΑΤΕ DF NS • (<i>M</i> _(ε, cal)) Terrain Category 3 0.75 0.83 0.89 0.89	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain Category 4 0.75 0.75 0.75 0.75	Table 4.1 7 Height (2) (m) ≤ 3 5 10 15 20 30 40 50	Ferrain/height ma Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.14 1.21 1.23	Iltipliers for gus regions Category 2 0.91 0.91 1.00 1.05 1.08 1.12 1.16 1.19	st wind speeds in except A0 Terrain/height rr Category 2.5 0.87 0.92 0.97 1.01 1.06 1.10 1.12	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.89 0.94 1.00 1.04	d terrains) Terra (Catego 0.7? 0.7? 0.7? 0.80 0.88
TERF MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30	TA TA AAIN AND JIERS FOI LLY DEV 'E LIMIT CABILITY ALI Terrain Category 1 0.99 1.05 1.12 1.16 1.19 1.22	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGIO! Multiplier Terrain Category 2 0.85 0.91 1.00 1.05 1.08 1.12	1 URE HEJ VIND SPI TERRAI ND PERM S A AND ΓΑΤΕ DF NS • (<i>M</i> _(ε, cal)) Terrain Category 3 0.75 0.75 0.83 0.89 0.94 1.00	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1 7 Height (2) (m) ≤ 3 5 10 15 20 30 40 50 75	Ferrain/height ma Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.14 1.12 1.21 1.23 1.27	Iltipliers for gus regions Terrain Category 2 0.91 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22	t wind speeds in except A0 Terrain/height r Category 2.5 0.87 0.92 0.97 1.01 1.06 1.10 1.13 1.17	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.89 0.94 1.00 1.04 1.07 1.12	d terrains Catego 0.72 0
TERE MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30 40	TA TA AIN AND JIERS FOI LLY DEV 'E LIMIT CABILITY ALI Terrain Category 1 0.99 1.05 1.12 1.16 1.19 1.22 1.24	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGIO! Multiplier Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16	1 URE HEJ VIND SPI TERRAI ND PERM S A AND ΓΑΤΕ DF NS • (<i>M</i> _(ε, cal)) Terrain Category 3 0.75 0.75 0.75 0.83 0.89 0.94 1.00 1.00	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Terrain Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1	Ferrain/height ma Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.18 1.21 1.23 1.27 1.31	Iltipliers for gus regions Terrain Category 2 0.91 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24	t wind speeds in except A0 Terrain/height r Category 2.5 0.87 0.92 0.97 1.01 1.06 1.10 1.13 1.17 1.20	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.89 0.94 1.00 1.04 1.07 1.12 1.16	d terrains Catego 0.7?
TERF MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30 40 50	TA TA AIN AND JERS FOI LLY DEV E LIMIT CABILITY ALI Terrain Category 1 0.99 1.12 1.16 1.19 1.22 1.24 1.25 1.27	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGIO! Multiplier Terrain Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16 1.18	1 URE HEJ VIND SPI TERRAI ND PERM S A AND ΓΑΤΕ DF NS • (<i>M</i> _(<i>x</i>, cat)) Terrain Category 3 0.75 0.75 0.75 0.83 0.89 0.94 1.00 1.04 1.07 1.07	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.80 0.85 0.90	Table 4.1	Ferrain/height mo Terrain Category 1 0.97 1.01 1.12 1.14 1.12 1.14 1.21 1.23 1.27 1.31 1.36 1.36 1.32	Iltipliers for gus regions Terrain Category 2 0.91 0.091 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.22 1.24 1.27 1.27	t wind speeds in except A0 Terrain/height r Category 2.5 0.87 0.92 0.97 1.01 1.06 1.10 1.13 1.17 1.20 1.24 1.27	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.21	d terrains Catego 0.72
TERF MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30 40 50 75 100	TA TA AIN AND JERS FOI LLY DEV 'E LIMIT DESIGN — CABILITY ALI Terrain Category 1 0.99 1.05 1.12 1.16 1.19 1.22 1.24 1.25 1.27 1.20	BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGIO! Multiplied Terrain Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24	1 URE HEJ VIND SPI TERRAI ND PERM S A AND ΓΑΤΕ DF NS · (<i>M</i> _(ε, cal)) Terrain Category 3 0.75 0.75 0.75 0.83 0.89 0.94 1.00 1.04 1.07 1.12 1.16	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1 ⁻ Height (2) (m) ≤ 3 5 10 20 30 40 50 75 100 150 200 NOTE 1 In Res	Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.13 1.21 1.21 1.36 1.39 ion A0, use Ms car 2 fi	Iltipliers for gus regions Terrain Category 2 0.91 0.091 1.00 1.05 1.08 1.12 1.16 1.18 1.12 1.16 1.18 1.22 1.24 1.27 1.29 r all z ≤ 100 m in.	t wind speeds in except A0 Terrain Category 2.5 0.87 0.92 0.97 1.01 1.06 1.10 1.13 1.17 1.20 1.24 1.27 all terrains. For 100	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 0 m <z 200="" fz<="" m="" td="" ≤=""><td>d terrains</td></z>	d terrains
TERF MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30 40 50 75 100 150	TA TA TA TA TA TA TA TA TA TA	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multiplier Terrain Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.27	.1 URE HEJ VIND SPI TERRAI ND PERM S A AND FATE DENS • (M _(x, cal)) Terrain Category 3 0.75 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1 — 7 Height (2) (m) ≤ 3 5 10 50 75 100 50 75 100 150 200 30 40 50 75 100 150 200 NOTE 1 In Reg all terrains.	Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.13 1.21 1.13 1.23 1.27 1.31 1.36 1.39 ion A0, use Mz,cat 2 fr	Itipliers for gus regions Terrain Category 2 0.91 0.091 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.27 1.29 or all z ≤ 100 m in .	t wind speeds in except A0 Terrain/Leight rr Category 2.5 0.87 0.97 1.01 1.06 1.10 1.13 1.17 1.20 1.24 1.27 all terrains. For 100	n fully develope multiplier (Mz.cat Terrain Category 3 0.83 0.83 0.83 0.83 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 0 m < z ≤ 200 m, ta	d terrains Catego 0.73 0.75 0.75 0.75 0.77 0.77 0.77 0.77 0.77
TERF MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30 40 50 75 100 150 200	TA TA AIN AND JIERS FOI LLY DEV E LIMIT DESIGN — CABILITY ALI Terrain Category 1 0.99 1.05 1.12 1.16 1.19 1.22 1.24 1.25 1.27 1.29 1.31 1.32 1.32	BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multiplien Terrain Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.27 1.29	.1 URE HEJ VIND SPI TERRAI ND PERM S A AND FATE DENS • (M _(G, cal)) Terrain Category 3 0.75 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1 — 7 Height (2) (m) ≤ 3 5 10 5 20 30 40 50 75 100 150 200 30 40 50 75 100 150 200 NOTE 1 In Reg all terrains. NOTE 2 For all NOTE 3 For in	Terrain Category 1 0.97 1.01 1.08 1.12 1.12 1.13 1.23 1.27 1.31 1.36 1.39 tion A0, use M _{2,cat 2} for use of the regions, for in termediate values of the regions, for intermediate values of the regions.	Itipliers for gus regions Terrain Category 2 0.91 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.27 1.29 or all z ≤ 100 m in termediate terrain	st wind speeds in except A0 Terrain/height m Category 2.5 0.87 0.97 1.01 1.06 1.10 1.13 1.17 1.20 1.24 1.27 all terrains. For 100 us use linear interport	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.89 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 0 m < z ≤ 200 m, ta olation.	d terrains Catego 0.72 0.88 0.99 0.12 0.94 0.12 0.94 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.94 0.12 0.12 0.12 0.94 0.12
TERF MULTIPI FU ULTIMAT STRESS I SERVICH Height (z) m ≤3 5 10 15 20 30 40 50 75 100 150 200 250 300	TA AIN AND JIERS FOI LLY DEV E LIMIT DESIGN — CABILITY ALJ Terrain Category 1 0.99 1.05 1.12 1.16 1.19 1.22 1.24 1.25 1.27 1.29 1.31 1.32 1.34 1.35	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multiplien Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.27 1.29 1.31 1.32	.1 URE HEJ VIND SPI TERRAI ND PERM S A AND FATE DENS • (M _(G, cal)) Terrain Category 3 0.75 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 1.27 1.29	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1 — 7 Height (2) (m) ≤ 3 5 10 15 20 30 40 50 75 100 150 200 NOTE 1 In Reg all terrains. NOTE 2 For all NOTE 3 For in	Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.18 1.21 1.23 1.27 1.31 1.36 1.39 cion A0, use M _{z,cat} 2 for lother regions, for in termediate values of	Itipliers for gus regions Terrain Category 2 0.91 0.05 1.06 1.16 1.18 1.22 1.24 1.27 1.29 or all z ≤ 100 m in termediate terrain	st wind speeds in except A0 Terrain Category 2.5 0.87 0.87 0.92 0.97 1.01 1.06 1.10 1.13 1.17 1.20 1.24 1.27 all terrains. For 100 as use linear interpor r interpolation.	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.83 0.89 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 0 m <z 200="" m,="" ta<br="" ≤="">olation.</z>	d terrains Catego 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7
TERF MULTIPI FU ULTIMAT STRESS E SERVICH Height (z) m ≤3 5 10 15 20 30 40 50 75 100 150 200 250 300 400	TA TA TA TA TA TA TA TA TA TA	1989 BLE 3.2.5 STRUCT R GUST V ELOPED STATE A - REGION LIMIT S L REGION Multiplien Category 2 0.85 0.91 1.00 1.05 1.08 1.12 1.16 1.18 1.22 1.24 1.27 1.29 1.31 1.32 1.35	.1 URE HEJ VIND SPI TERRAI ND PERM S A AND S A AND TATE DE NS • (M _(G, cal)) Terrain Category 3 0.75 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 1.27 1.29 1.32	IGHT EEDS IN NS MISSIBLE D B ONLY ESIGN — Category 4 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Table 4.1 — 7 Height (2) (m) ≤ 3 5 10 15 20 30 40 50 75 100 50 75 100 150 200 NOTE 1 In Reg all terrains. NOTE 2 For al NOTE 3 For in	Terrain Category 1 0.97 1.01 1.08 1.12 1.14 1.18 1.21 1.31 1.36 1.39 tion A0, use M _{z,cat} 2 for 1 other regions, for in termediate values of	Itipliers for gus regions Terrain Category 2 0.91 0.05 1.06 1.16 1.12 1.16 1.22 1.24 1.27 1.29 or all z ≤ 100 m in termediate terrain height z, use linear	st wind speeds in except A0 Terrain/height n Category 2.5 0.87 0.92 0.97 1.01 1.06 1.10 1.13 1.17 1.20 1.24 1.27 all terrains. For 100 rs use linear interpor r interpolation.	n fully develope multiplier (Mz,cat Terrain Category 3 0.83 0.83 0.83 0.83 0.83 0.83 0.94 1.00 1.04 1.07 1.12 1.16 1.21 1.24 0 m < z ≤ 200 m, ta olation.	d terrains

A SPECIALIST PRACTICE

A SPECIALIST PRACTICE

HUNTINGWOOD, GREAT WESTERN HIGHWAY -Project: EXISTING ADVERTISING SIGNAGE STRUCTURE COMPUTATION SHEET Date: 18.03.2024 Project No: 4981 01 Designer: EL Level 7, 400 Collins Street Melbourne 3000 MB Date: 20.03.2024 Sheet Telephone (03) 9600 0366 Project Leader: EL Reviewer: of jmpmelb@jmp.com.au 19 AS 1170.2-1989 REGION C sical Cycl REGION D evera Tropic Alice Springs REGION C REGIÓN Normal cal Cyc REGION B REGION C pical Cyclon REGION B Intermediate 30 BASIC WIND SPEEDS IN DIFFERENT REGIONS V_s (m/s) V_p ٧., Regions m/s] 38 38 45 50 41 49 57 69 50 60 70 85 REGION Normal Ď FIGURE 3.2.2 BOUNDARIES OF REGIONS A, B, C AND D (see Paragraph E3.2.1 of Appendix E) COPYRIGHT **TABLE 2.5.1** By Inpections the Wind **REGIONAL MULTIPLYING FACTORS (B1)** load used in the original design is Region Factors (B₁) higher than the current A-Normal 1.0 Wind Loading Code B-Intermediate 1.5 C-Tropical cyclone 2.3 AS1170.2 :2021. D-Severe tropical cyclone 3.3 Site falls under Region A.

Appendices

Appendix 1 Point Cloud Survey Report

Huntingwood Billboard Scan

PROJECT METADATA REPORT

Client reference: 203791

DEVELOP WITH_____ CONFIDENCE TM

veris

Contents

1.	Overview	2
2.	Intended use of data	3
3.	Survey Datum and Spatial Accuracy	3
4.	Limitations	3
5.	Supplied digital data	4
6.	Closing	5

1. Overview

Veris Australia were contracted to perform a 3D laser scanning of the billboard located in Huntingwood

The 3D laser scanning survey was performed by the Veris Digital & Spatial team equipped with a Leica RTC360 scanner. Approx 10 scans were required to achieve maximum coverage

2. Intended use of data

The intent of the survey is to facilitate engineering design and inform new equipment installation

3. Survey Datum and Spatial Accuracy

All survey data has been provided on an assumed datum only.

Accuracy of the terrestrial laser scanning survey and derived datasets is to the order of \pm 5mm, with global accuracy \pm 20mm.

4. Limitations

Due to the nature of 3D laser scanning, all objects within line-of-sight of the instrument are captured. The nature of the structure means that some elements may be obscured by other structural objects. Best efforts have been made to ensure maximum data coverage

This survey dataset is for engineering purposes only.

5. Supplied digital data

These deliverables have been supplied

5.1. Autodesk Recap

A copy of scan data has been supplied as an Autodesk RCP. Recap RCS format point clouds enable users to directly interrogate laser scan data in a 3D environment across all Autodesk products (AutoCAD, Revit, Navisworks).

Figure 1: Example of Autodesk Recap datasets as viewed in Recap

5.2. Revit2024 model

A 3D digital representation of the structure used as a reference for design, architecture, and asset management.

6. Closing

On behalf of Veris Australia I would like to thank Ooh! Media for the opportunity to work with you on this project,

Yours sincerely,

Veris Australia

 \subset

Ben Johnston Digital and Spatial Lead NSW / ACT

Appendix 2 Structural Condition Report

ADVERTISING SIGNAGE STRUCTURE Great Western Highway, Huntingwood – Inbound & Outbound

Structural Condition Report

14 JULY 2023

CONTACT

CHRIS SLATER Senior Engineer

T 02 8907 3942 M 0410 630 972 E chris.slater@arcadis.com Arcadis

Level 16, 580 George Street Sydney NSW 2000

OOH! MEDIA ADVERTISING SIGNAGE STRUCTURE

Great Western Highway, Huntingwood – Inbound & Outbound - Structural Condition Report

Author	Chris Slater	a: Stater.
Checker	Michael Cheng	
Approver	Michael Cheng	
Report No Date	30110779 14/07/2023	
Revision Text	1	

This report has been prepared for oOh! Media in accordance with the terms and conditions of appointment for TfNSW Large Format Inspection Reports, dated 13/10/2021. Arcadis Australia Pacific Pty Limited (ABN 76 104 485 289) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

REVISIONS

Revision	Date	Description	Prepared by	Approved by
1	14/07/23	First issue	CS	MC

CONTENTS

1 INTRODUCTION	1
1.1 General	1
1.2 Site Visit	1
2 DESCRIPTION	2
3 STRUCTURAL CONDITION & OBSERVATIONS	5
4 RECOMMENDATIONS	11

1 INTRODUCTION

1.1 General

Arcadis Australia Pacific Pty Ltd (Arcadis) was engaged by oOh! Media to conduct a structural condition report on the monopole advertising signage structure located on the southern side of the Great Western Highway, Huntingwood.

Figure 1 Locality Plan

1.2 Site Visit

Chris Slater of Arcadis visited the site on Thursday 13th July 2023. The purpose of this visit was to undertake a detailed inspection of the advertising signage structure from all accessible areas. The inspection was achieved using a safety harness and working at height precautions in accordance with Work Health and Safety Regulations 2017.

The weather at the time of the inspection was fine and sunny.

During this visit, information and photographs were recorded regarding the condition of the fixing components, framing members, protective surfacing, and other relevant material with respect to the performance of the signage structure. All caption comments are indicative, with the true condition record being the photographic record.

2 DESCRIPTION

The signage structure is commonly referred to as a double sided 'V' shaped front lit 'Supersite' monopole, having a nominal display size of 12.660m long x 3.350m high.

The signage structure comprises a freestanding galvanised monopole with a flanged connection for attaching a galvanised torsion beam. A series of trussed frames (6 in total) are attached to the top of the torsion beam. These trussed frames are a fully welded assembly comprising channels with circular hollow section members for bracing.

Photo 1 – Monopole to torsion beam flanged connection.

Photo 2 – Typical trussed frame connected to top of torsion beam.

Advertising Signage Structure

Cantilevering from the end of each trussed frame is a twin-level gantry. Like the trussed frames, the gantry elements (channels with angle members for bracing) are fully welded, and support and upper and lower catwalk.

Both catwalks are nominally 600mm wide, and are equipped with compliant handrails and kick rails, and have a permanent fixed ladder located at each end, providing access between the gantry levels. The ends of the upper catwalk are fitted with selfclosing gates that allow the user to pass from the fixed ladder onto the catwalk, with the gate closing behind them, thus providing adequate fall protection.

Three horizontal rails (75 x 50 RHS) are connected to the front face of each gantry frame via fully welded seating angles. These rails support the respective sign faces, which comprise folded sheet metal segments, commonly referred to as `signage pans`.

The `signage pans` are separate entities, nominally 1200mm wide for the full height of the advertising sign, providing a flat backing for the vinyl advertising skin to be attached. As mentioned previously the `signage pans` are fabricated from sheet metal that has been folded to provide rigidity/stiffness, together with additional spot welded girts at the horizontal rail locations. These elements are fixed to the horizontal rails via angle brackets, and `Tek` screws (refer Fig. 6-7).

The signage structure is also equipped with four cantilever floodlights that illuminate the front of the advertising sign. These lights are solar powered and have four solar panels fixed to the trussed frames (refer Fig. 6-8).

Access to the lower catwalk is gained by a fixed vertical ladder attached to the monopole. The vertical ladder is fitted with a 'Ladsaf' cable vertical safety system that has been inspected and tagged.

Photo 3 – Vertical access ladder equipped with 'Ladsaf'.

Photo 4 – 'Ladsaf' installation and service record affixed to the structure.

During the inspection no other obvious defects that might warrant further investigation were noticed. However, that does not preclude the possibility that other less obvious defects may exist and were concealed.

For the intent of this report Arcadis has assumed that the existing signage structure, and the additional solar panel support framing, has been designed in accordance with relevant Australian codes/standards, and is structurally adequate for its purpose.

Photo 5 – General view of advertising signage structure.

3 STRUCTURAL CONDITION & OBSERVATIONS

Generally, the signage structure, including the monopole and superstructure, is in a satisfactory condition (refer photos 6 to 9).

Photo 6 – General base view

Photo 7 – General view from underside

Photo 8 – General view of bottom gantry

Photo 9 – General view of top gantry

However, there are some issues that need to be addressed.

The issues observed were:

• Minor surface corrosion to knee rail welded connection.

Photo 10 – Minor surface corrosion to welded connection.

Photo 11 – Minor surface corrosion to welded connection.

Advertising Signage Structure

• Minor surface corrosion to self-closing gate framing, and vertical ladder support framing.

Photo 12 – Surface corrosion to self-closing gate framing.

Photo 13 – Surface corrosion to vertical ladder support framing.

• Minor surface corrosion to signage pan.

Photo 14 – Minor surface corrosion to signage pan.

• Corroding shackle bolt and wire grip 'U' bolts.

Photo 15 – Corroding shackle bolt.

Advertising Signage Structure

Photo 16 - Corroding wire grip 'U' bolts.

 Deformation/buckling of the signage pans located at the top right of the west-facing sign, and both top and bottom right of the east-facing sign which has likely resulted from a combination of the cantilever distance of the pan from the horizontal rail, and the amount of tension applied to the ratchet straps during the vinyl advertising skin installation. The deformation observed is not structurally significant, although it may impact on the appearance of the advertisement.

Photo 17 – Deformation to signage pan.

Photo 18 – Deformation to signage pan.

4 RECOMMENDATIONS

We would recommend that the surface corrosion be wire brush cleaned and treated with a proprietary cold galvanising paint at the next scheduled maintenance programme, to avoid further corrosion developing and potentially more costly remediation. This may involve the complete replacement of bolts.

The deformed/damaged signage pans do not affect the overall structural performance of the signage structure. However, should the aesthetics of the advertisement be unacceptable, the signage pans could either be repaired or replaced, and a permanent strut member introduced to prevent the signage pan buckling under the tension load of the ratchet strap.

Arcadis would recommend that the signage structure be re-inspected every three (3) years from the date of this report.

