GREAT WESTERN HIGHWAY HUNTINGWOOD NSW - EXISTING ADVERTISING SIGNS - STRUCTURAL ASSESSMENT

Structural Assessment

Structural Consulting Engineering Services

Prepared for
oOh! Media Operations Pty Ltd

Prepared by
JMP Consulting Engineers

A	$22 / 03 / 2024$	For Information					
REV	DATE		EVL		EVL		MB

Table of Contents

Introduction 3
Description 4
Design Methodology and Design Parameters 5
Summary of Results 6
Site Location 7
Existing Structure Geometry and Sizes 8
Signage Weight and Wind Loading 9
Serviceability Assessment 10
Strength Assessment 11
Appendices 12
Appendix 1 Point Cloud Survey Report 12
Appendix 2 Structural Condition Report 13

Introduction

This report has been commissioned by oOh! Media for JMP to appraise the structural design and strength of the existing advertising signage structure on the southern side of the Great Western Highway, Huntingwood, NSW.

The purpose of this appraisal is to evaluate the structure for compliance as part of the oOh! Media development application to the Department of Planning, Housing and infrastructure (DPHI) in NSW. DPHI requested oOh! Media to confirm that the specifications of the original structural design of the sign is compliant with current Design Standards and whether the "as built" structure conforms to the current relevant standards to be undertaken by a suitably registered structural engineer.

Our appraisal has been based upon information provided in the form of cloud point survey result, photos, and a Structural Condition Report included within Appendix 1 and Appendix 2 respectively.

This report is not intended to be a dilapidation survey of the condition of the existing steel structure and that JMP have not witnessed the structure in person.

We have excluded from the appraisal fitness for purpose aspects as well as $\mathrm{OH} \& \mathrm{~S}$, and maintenance access provisions, for conformance with the current BCA/NCC or other relevant Australian Standards.

This report has been prepared by a Qualified Structural Engineer.

Description

The signage structure is commonly referred to as a double-sided " V " shaped front-lit "Supersite" monopole having a nominal display size of $12,660 \mathrm{~mm}$ long $\times 3,350 \mathrm{~mm}$ high.

The signage structure comprises a freestanding galvanised monopole with a bolted connection for attaching a galvanized torsion beam. A series of trussed frames, six in total, are attached to the top of the torsional beam. The main top, bottom, and vertical truss frame members are fully welded to each other while the diagonal members are connected to the top and bottom with bolts. The trussed frames comprise of steel channels and steel circular hollow section members for bracing.

The structural steel framed V-shape sign has upper and lower maintenance access catwalks on each side which provide the sign installers access to the top and bottom of the sign for each face.

The monopole is connected to a $1250 \mathrm{~mm} \times 1250 \mathrm{~mm}$ pilaster with bolts. Unfortunately, there are no records of footing size.

The signage was built on 2001 as per the client's record.

Design Methodology and Design Parameters

This report details the structural assessment of the existing steel framed box sign structure supporting the static screen for the Ultimate Limit State and Serviceability Limit State Loading Cases.

Wind loading used in the assessment is as per AS1170.2:2021 with the appropriate factors and wind speed particular for the region.

The weight of the advertising fixed banner skin, $12.66 \mathrm{~m} \times 3.35 \mathrm{~m}$ applied on the structure is 15 kgs each side. This load is equivalent to $0.35 \mathrm{~kg} / \mathrm{m}^{\wedge} 2$. Other accessories such as access catwalks are added as super imposed dead loads on the structure. Live loads on the walkways are also considered in accordance with AS1657.

There are no available existing drawings for this signage. A 3D laser scanning of the signage was conducted to get the profile and sizes of the steel framing existing signage structure.

The wall thickness of the CHS Column and torsional beam are unknown. The thickness considered in the design is 12.7 mm for the torsional beam and 12 mm for the columns. These values were based on the other sites which have the same framing layout and member sizes.

The design evaluation of the signage framing members was undertaken using Space Gass and Toolkit software. Steel member connections were evaluated using in-house design procedures using simplified methods.

There is no information about the existing footing however, assessment was made by investigation of the historical changes to Australian wind loading standards over the years.

Steel Parameters

$\mathrm{E}=200,000 \mathrm{MPa}$
Yield strength of plates $=300 \mathrm{MPa}$
Yield strength of hollow sections $=350 \mathrm{MPa}$
Yield strength of all other members $=250 \mathrm{MPa}$
Weld yield strength $=480 \mathrm{MPa}$

Design Codes and References

AS/NZS 1170.0:2002 Structural Design Actions - Part 0: General Principles.
AS/NZS 1170.1:2002 Structural Design Actions - Part 1: Permanent, Imposed, and other actions.
AS/NZS 1170.2:2021 Structural Design Actions - Part 2: Wind Loads.
AS1657:2018 Fixed Platforms, Walkways, Stairways and Ladders - Design, Construction and Installation.

AS2312.1:2014 Guide to the Protection of Structural Steel against Atmospheric Corrosion by the Use of Protective Coatings.

AS4100:2020 Steel Structures
AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals.

Load Combinations

Load Combinations are based on the requirements of AS1170.0. Refer to Space Gass Input (Section D.2) for load combinations used in this assessment.

Summary of Results

Based upon our analysis, we have found that all steel members are adequate for Ultimate Limit State Load Case.

All steel connections depicted in the photos are adequate to resist the design forces.
All predicted displacements of the frame are within the normal industry-accepted Serviceability Limit State specified in AS1170.0.

The structure was designed in the year 2000. The loads were based on Australian Standard AS/NZS 1170.2: 1989. The original wind load is higher compared to the current Standard. Therefore we can conclude that the existing footing has sufficient strength to resist the current loads.

Those recommendations nominated in the structural conditions report prepared by Arcadis should be implemented in the short term to prolong the longevity of the structure and be more serviceable.

The above-mentioned results and implementation of the recommendations ensure the structural viability of the signage structure and compliance with relevant Building Code of Australia (BCA) requirements and Australian Standards.

Site Location

HUNTINGWOOD, GREAT WESTERN HIGHWAY -
Project: EXISTING ADVERTISING SIGNAGE STRUCTURE

Designer: EL
Date: 18.03.2024
Project No: 498101

Project Leader: EL
Reviewer: MB
Date: 20.03.2024 Sheet
of

> SITE
> (APPROXIMATE LOCATION)

Existing Structure Geometry and Sizes

	HUNTINGWOOD, GREAT WESTERN HIGHWAY -	
Project:	EXISTING ADVERTISING SIGNAGE STRUCTURE	
Designer:	EL	Date: 18.03 .2024
Project No: 498101		

FROM POINT CLOUD SURVEY

HUNTINGWOOD, GREAT WESTERN HIGHWAY -
Project: EXISTING ADVERTISING SIGNAGE STRUCTURE

COMPUTATION SHEET

Designer: EL	Date: 18.03 .2024	Project No: 498101
Project Leader: EL	Reviewer: MB	Date:20.03.2024 Sheet of

HUNTINGWOOD, GREAT WESTERN HIGHWAY -
Project: EXISTING ADVERTISING SIGNAGE STRUCTURE
COMPUTATION SHEET

Designer: EL
Date: 18.03.2024
Project No: 498101

Project Leader: EL
Reviewer: MB
Date:20.03.2024
Sheet
of

EXISTING SIGNAGE - STEEL BEAM SCHEDULE			
MARK	SIZE	Family and Type	REMARKS
B1		BM UB: 180x90x13mm	
B3		BM L-Angle: 70x120x3mm	
B4		BM UB: $170 \times 90 \times 13 \mathrm{~mm}$	
B5		BM PFC: $145 \times 80 \times 10 \mathrm{~mm}$	
B6		BM UB: $145 \times 145 \times 13 \mathrm{~mm}$	
B10		BM RHS: $50 \times 75 \times 3.0 \mathrm{RHS}$	
B11		BM SHS: $40 \times 30 \times 3 \mathrm{~mm}$	
B12		BM PFC: $150 \times 80 \times 10 \mathrm{~mm}$	
DB1		BM SHS: $75 \times 75 \times 3 \mathrm{~mm}$	
DB2		BM SHS: $50 \times 75 \times 3 \mathrm{~mm}$	
DB3		BM CHS: $070 \times 5 \mathrm{~mm}$	
OR1		BM PFC: $80 \times 40 \times 10 \mathrm{~mm}$	
RA1		BM L-Angle: $40 \times 40 \times 3 \mathrm{~mm}$	
S1		BM L-Angle: 75x75x3mm	

EXISTING SIGNAGE - STEEL COLUMN SCHEDULE			
MARK	SIZE	Family and Type	REMARKS
SC1		700DIA	
SC2		CL PFC: 150x80x10PFC	
SC4		CL PFC: 100x50x10PFC	
SC5		CL SHS: $45 \times 45 \times 8 \mathrm{~mm}$	
SC6		CL SHS: 50x50x8mm	
SC7		CLRHS: $50 \times 100 \times 3 \mathrm{~mm}$	

$10 \mathrm{~S} 1=75^{*} 8 \mathrm{EA}$

14 DB3 $=76.1 \times 3.2 \mathrm{CHS}$
15 SC4=100 PFC
$\mathrm{SHS}+* \mathrm{~S} \angle=\mathrm{tga} 9$

Signage Weight and Wind Loading

| | HUNTINGWOOD, GREAT WESTERN HIGHWAY - |
| :--- | :--- | :--- | :--- | :--- |

WEIGHT OF SUPERSITE STATIC SCREEN $=0.035 K \mathrm{KN} / \mathrm{m}^{\wedge} 2$

STEEL WEIGHT DENSITY $=7,800 \mathrm{KG} / \mathrm{M}$

PLATFORM LIVE LOAD=2.5kPa

REFER SPACEGASS OUTPUT.

HUNTINGWOOD, GREAT WESTERN HIGHWAY Project: EXISTING ADVERTISING SIGNAGE STRUCTURE

COMPUTATION SHEET

Assessment of Existing Signage
Great Western Highway, Huntingwood, NSW Oohh Media

Project No.: 498101 Designed: EVL

WIND V5.03

Design:	(Wind Analysis WA01) Sydney, Non-temporary structure
Importance:	All other structures not included in 1,3 or 4, Life $=50$ years, Non-Cyclonic, APE = 500 years, APE.Serv = 25 years
Pressures:	Wu.max $=1.14 \mathrm{kPa}, \mathrm{Ws} / \mathrm{Wu}=0.68$

Location - Fig 3.1(A), 3.1(B)

Location $=$ Sydney		
Region $=$	A	Figure 3.1 (A)
Sub region $=$	2	Figure 3.1(A)
Cyclonic $=$	N (Y)es, (N)o	Table 3.2(A)

Importance All other structures not included in 1,3 or 4

Importance level $=$	2 1,2,3,4,(C) ustom
Design working life $=$	50 Years

Annual prob. of exceedance (APE) $=1 /$	500 years	AS1170.0 - Table F2
Annual prob. of exceed. Serv. (APE.s) $=1 /$	25 years	AS1170.0 - Appendix C

Design wind speed (Vdes, q) - Cl 2.3

Ultimate regional wind speed $(V R)=$	$45 \mathrm{~m} / \mathrm{s}$	For a 1/500 APE - Table 3.1
Serv. regional wind speed $(V R . s)=$	$37 \mathrm{~m} / \mathrm{s}$	For a 1/25 APE.s - Table 3.1
Climate change multiplier $(\mathrm{Mc})=$	1.00 Table 3.3	
Minimum ultimate speed $(\mathrm{Vdes}, \theta)=$	$30 \mathrm{~m} / \mathrm{s}-\mathrm{Cl} 2.3$	
Ratio VR.s $/ \mathrm{VR}=$	0.82	
Ratio $\mathrm{Ws} / \mathrm{Wu}=$	0.68	

Design wind data for non-cyclonic areas with APE of 1:500 years

Dir (b)	Vdes, θ	Wu	Ws	Dir (b)	Vdes. $\boldsymbol{\theta}$	Wu	Ws
	m / s	kPa	kPa		m / s	kPa	kPa
N	41.5	1.03	0.70	NE	37.1	0.83	0.56
S	41.5	1.03	0.70	SW	43.7	1.14	0.77
E	41.5	1.03	0.70	SE	41.5	1.03	0.70
w	43.7	1.14	0.77	NW	43.7	1.14	0.77

Site wind data for non-cyclonic areas with APE of 1:500 years

Dir (b)	Md (*1)	$\begin{gathered} \mathrm{VR}^{*} \mathrm{Mc}^{*} \mathrm{Md} \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	Ave. Ht (z) m	Cat	Mz,cat	Ms	Mt	Vsit, β m / s	Wu.sit kPa
N	0.85	38.3	10.4	2.2	0.97	1.00	1.00	37.1	0.83
NE	0.75	33.8	10.4	2.2	0.97	1.00	1.00	32.7	0.64
E	0.85	38.3	10.4	2.2	0.97	1.00	1.00	37.1	0.83
SE	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03
S	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03
SW	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03
W	1.00	45.0	10.4	2.2	0.97	1.00	1.00	43.7	1.14
NW	0.95	42.8	10.4	2.2	0.97	1.00	1.00	41.5	1.03

Member: \quad (Hoarding H01) 12.7m wide $\times 3.4 \mathrm{~m}$ high, 10.4 m to top (7.1 m gap under)
Normal: $\quad \mathrm{Cp}, \mathrm{n}=1.51$
Wind at $\theta=45: \quad C p, n=1.51$
Wind at $\theta=90: \quad C p, n= \pm 1.2-0$ to $2 c, \pm 0.6-2 c$ to $4 c$, then ± 0.3

Freestanding hoardings and walls - Appendix B. 2

Aerodynamic shape factor (Cshp) $=\mathrm{Cp}, \mathrm{n} *$ Kp
Equ B. 2
$\mathrm{Cp}, \mathrm{n}=$ Net pressure coefficient -Cl B.2.1
$\mathrm{Kp}=$ Net porosity factor -Cl B.1.4

Wind normal to hoarding or wall $\theta=0^{\circ}-$ Table B.2(A)

Ratio $(\mathrm{b} / \mathrm{c})=\quad 3.78$
Ratio $(\mathrm{c} / \mathrm{h})=0.32$
$\mathrm{Cp}, \mathrm{n}=1.3+0.5(0.3+\log 10(\mathrm{~b} / \mathrm{c}))^{*}(0.8-\mathrm{c} / \mathrm{h})=\quad 1.51$
Vertical height of resultant $(\mathrm{h}-\mathrm{c} / 2)=\quad 8725 \mathrm{~mm}$ above the surface
Horizontal eccentricity of resultant $(e=0)=$
0 mm (No eccentricity)

Wind at $\theta=45^{\circ}$ to hoarding or wall - Table B.2(B) \& B.2(C)

Ratio $(\mathrm{b} / \mathrm{c})=$	3.78
Ratio $(\mathrm{c} / \mathrm{h})=$	0.32

$C p, n=1.3+0.5(0.3+\log 10(b / c))^{*}(0.8-c / h)=\quad 1.51$
Vertical height of resultant $(\mathrm{h}-\mathrm{c} / 2)=8725 \mathrm{~mm}$ above the surface
Horizontal eccentricity of resultant ($\mathrm{e}=0.2^{*} \mathrm{~b}$) $=$
2532 mm

> From Table B.2(B)

Wind parallel to hoarding or wall $\theta=90^{\circ}-$ Table B.2(D)

Ratio $(b / c)=$	3.78
Ratio $(c / h)=$	0.32

$\mathrm{Cp}, \mathrm{n}= \pm 1.2$ - 0 to $2 \mathrm{c}, \pm 0.6-2 \mathrm{c}$ to 4 c , then ± 0.3

Net porosity factor - B.1.4

Solidity factor $(\delta)=$	1.000 ratio of solid area to total area of structure
Net porosity factor $\mathrm{Kp}=1-(1-\delta)^{2}=$	1.000

HUNTINGWOOD, GREAT WESTERN HIGHWAY -
Project:
EXISTING ADVERTISING SIGNAGE STRUCTURE

Designer: EL
Date: 18.03.2024 Project No: 498101

Project Leader: EL Reviewer: MB Date: 20.03.2024 Sheet of

| | PRINCESS HIGHWAY, HEATCOTE- EXISTING
 Project:
 ADVERTISING SIGNAGE STRUCTURE | | COMPUTATION SHEET |
| :--- | :--- | :--- | :--- | :--- | :--- |

WIND PRESSURES ON THE SIGNAGE STRUCTURE ARE CALCULATED AS FOLLOWS:
W = wu \times Cshp
OPTION 1-CONSIDER AS HOARDING,
FOR WESTERLY/EASTERLY WIND:
Cshp $=1.51$
HENCE,
WIND PRESSURE $=1.14 \mathrm{kPa} \times 1.51=1.72 \mathrm{kPa}$
THE OVERALL DIMENSIONS OF THE SIGNAGE ARE APPROX. 12.66m LONG x 3.35m HIGH EACH SIDE

THEREFORE
WIND LOADING
TOP HOR MEMBER $=1.72 \mathrm{kPa} \times 1.3=2.24 \mathrm{kN} / \mathrm{m}$
MIDDLE HOR MEMBER $=1.72 \times 1.0=1.72 \mathrm{kN} / \mathrm{m}$
BOTTOM HOR MEMBER $=1.72 \times 0.90=1.55 \mathrm{kN} / \mathrm{m}$
FOR NORTHERLY AND SOUTHERLY WIND:
Cshp $=2.0$
HENCE,
WIND PRESSURE $=1.72 \mathrm{kPa} \times 2.0=3.44 \mathrm{kPa}$
THIS DIRECTION IS NOT CRITICAL. THE FRAMING IS OPEN.
CONSIDER WIND ON THE POST $=3.44 \times 0.7=2.41 \mathrm{kN} / \mathrm{m}$
WIND ON FRAME $($ INT $)=1 \times 3.44=3.44 \mathrm{kN} / \mathrm{m} ;$ EXT $=1 \times 0.5 \times 3.44=1.72 \mathrm{kN} / \mathrm{m}$
FOR WESTERLY/EASTERLY WIND:
$\mathrm{Cpe}=0.8 ;$ wu $=1.14 \mathrm{kPa} ; \mathrm{Cpl}=0.3$

OPTION 2-CONSIDER AS ELEVATED STRUCTURE

THEREFORE
WIND LOADING WEST WALL
TOP HOR MEMBER $=1.14 \mathrm{kPa} \times(0.8+0.3) \times 1.3=1.63 \mathrm{kN} / \mathrm{m}$
MIDDLE HOR MEMBER $=1.14 \times(0.8+0.3) \times 1.0=1.254 \mathrm{kN} / \mathrm{m}$
BOTTOM HOR MEMBER $=1.14 \times(0.8+0.3) \times 0.90=1.1286 \mathrm{kN} / \mathrm{m}$
WIND LOADING EAST WALL
TOP HOR MEMBER $=1.14 \mathrm{kPa} \times(0.5+0.3) \times 1.3=-1.186 \mathrm{kN} / \mathrm{m}$
MIDDLE HOR MEMBER $=1.14 \times(0.5+0.3) \times 1.0=-0.912 \mathrm{kN} / \mathrm{m}$
BOTTOM HOR MEMBER $=1.14 x(0.5+0.3) \times 0.90=-0.82 \mathrm{kN} / \mathrm{m}$
」 M P
SPACE GASS 14.12 （ 64 －bit）－JOHN MULLEN \＆\＆PARTNERS PTY LTD
Path：Z：\＿Projects $\backslash 4981-01$ Great Western \ldots ．${ }^{\text {Computations } \backslash \text { Model Huntingwood }}$ Designer：Date：Wednesday，March 20， 2024 2：59 PM，Page： 1

4 B1 180 UB 18.1
5 Column $=700$ diax12 CHS
6 B10＝75＊50＊4 RHS
－ $7 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$
つヨd OST＝てTは 8
$\forall \cap 8 * S \angle * S Z T=\varepsilon 9$
$10 \mathrm{~S} 1=75 * 8 \mathrm{EA}$
0 0．8I 8 ก $0 \mathrm{SI}=99$ IT
$\forall \cap 8 * S \angle * S Z T=\varepsilon g ~ Z T$
13 16thk plate
14 DB3 $=76.1 \times 3$
14 DB3 $=76.1 \times 3.2 \mathrm{CHS}$
$15 \mathrm{SC} 4=100 \mathrm{PFC}$
SHS $\downarrow * S L=$ tga 91
$\forall \cap 8 * S \angle * S Z I=\varepsilon G \angle T$
$\forall \cap 8 * S L * S Z T=\varepsilon 9$ 8T
d $M P$
SPACE GASS 14.
Path：Z：\＿Projects \4981－01 Great Western．．．\Computations \backslash Model Huntingwood Designer：Date：Wednesday，March 20， 2024 3：02 PM，Page： 1
4 B1 $=180$ UB 18.1
5 Column $=700$ diax 12 CHS

$\square 7 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$
つヨd OST＝てIG 8
$\forall \cap 8 * S \angle * S Z T=\varepsilon g$
$\forall \exists 8 * S \angle=T S$ of
$\forall \cap 8 * G \angle * G Z I=\varepsilon 9$
0.8 I G $0 \mathrm{OL}=99$
16thk plate
14 DB3 $=76.1 \times 3.2 \mathrm{CHS}$
15 SC4＝100 PFC
SHS $\downarrow *$ SL $=$ Iga 91
$\forall \cap 8 * S \angle * S Z I=\varepsilon G \quad 8 I$
$\forall \cap 8 * S \angle * S Z I=\varepsilon વ \angle I$
ل $M P P$
SPACE GASS 14.
Path：Z：\＿Projects\4981－01 Great Western．．．\Computations \Model Huntingwood Designer：Date：Wednesday，March 20， 2024 3：02 PM，Page： 1

Load case 3
 $\square 3$ Screen Load

2．

：suo！̣วəS

1 Torsional Beam＝508＊12．7 CHS
つヨd OST＝てIG て
3 SC2＝150 PFC
4 Column $=700 \mathrm{diax} 12 \mathrm{CHS}$

－ $7 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$
つヨd OST＝てTは 8
$\forall \cap 8 * S \angle * S Z T=\varepsilon g$

$\forall \cap 8 * \mathrm{SL} \angle \mathrm{GZI}=\varepsilon 9$ ZT
13 16thk plate
14 DB3 $=76.1 \times 3$
14 DB3 $=76.1 \times 3.2 \mathrm{CHS}$
$15 \mathrm{SC} 4=100 \mathrm{PFC}$
SHS $t * S L=$ IGa 9I
」 M P
SPACE GASS 14.12 (64-bit) - JOHN MULLEN \&\& PARTNERS PTY LTD
Path: Z:\ Projects $\backslash 4981-01$ Great Western \ldots. \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 3:03 PM, Page: 1
SPACE
Sections:

$$
\begin{aligned}
& 3 \text { SC2 =150 PFC } \\
& 4 \text { B1=180 UB } 18.1
\end{aligned}
$$

$$
\begin{aligned}
& 4 \text { B1=180 UB } 18.1 \\
& 5 \text { Column= } 700 \text { diax12 CHS }
\end{aligned}
$$

- $7 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$

$$
\begin{aligned}
& 6 \mathrm{~B} 10=75 * 50 * 4 \mathrm{RHS} \\
& 7 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}
\end{aligned}
$$

8 B12=150 PFC
$B 3=125 * 75 * 8$ UA
$10 \mathrm{~S} 1=75 * 8 \mathrm{EA}$

13 16thk plate
14 DB3 $=76.1 \times 3$
15 SC4=100 PFC
SHS $\downarrow * S L=$ Iga 91
$17 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$
$18 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$
P
SPACE GASS 14.12 (64 -bit) - JOHN MULLEN \&\& PARTNERS PTY LTD
Path: Z:_Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 3:57 PM, Page: 1
Р SPACE GASS 14.12 (64 -bit) - JOHN MULLEN \&\& PARTNERS PTY LTD Path: Z:_Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 3:57 PM, Page: 1
3 SC2=150 PRC 18.1
4 B1=180 UB 18.1 5 Column= 700diax12 CHS
6 B10 $=75 * 50 * 4$ RHS
$7 B 3=125 * 75 * 8$ UA
9 B3 $=125 * 75 * 8$ UA
0 0.8 Gn 0SI=99 IT
$12 \mathrm{~B} 3=125 * 75 * 8$ UA
16thk plate
DB3 $=76.1 \times 3.2$
15 SC4 $=100 \mathrm{PFC}$
$18 \mathrm{~B} 3=125^{*} 75 * 8$ UA
Р
SPACE GASS 14.12 (64 -bit) - JOHN MULLEN \&\& PARTNERS PTY LTD
Path: Z:_Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 3:58 PM, Page: 1
$\square 7 \mathrm{Wu}(\mathrm{W}-\mathrm{E})$ - Elevated Structure

Sections:
$\begin{array}{ll}2 & B 12=150 \text { PFC } \\ 3 & \text { SC2 }=150 \text { PFC } \\ 4 & \text { B1 }=180 \text { UB 18.1 } \\ 5 & \text { Column }=700 \text { diax12 CHS } \\ 6 & \text { B10 }=75 * 50 * 4 \text { RHS } \\ 7 & \text { B3 }=125 * 75 * 8 \text { UA } \\ 9 & \text { B3 }=125 * 75 * 8 \text { UA }\end{array}$
0 08I On 0SI=99 II
$12 \mathrm{~B} 3=125^{*} 75 * 8$ UA
Thk plate
DB3 $=76.1 \times 3.2 \mathrm{CHS}$
15 SC4 $=100 \mathrm{PFC}$

Serviceability Assessment

ل M P
SPACE GASS 14.
Path: Z:_Projects $\backslash 4981-01$ Great Western.. \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 5:48 PM, Page: 1
Filter: Spine
Load cases 21-24
(2) Servieability $\square 21(\mathrm{SW}) \mathrm{G}+\mathrm{Q}$
220.68 W 1
230.68 W 2
240.68 W 3
8500/35=242 > 125.
Acceptable

Strength Assessment

ma

SPACE GASS 14.12 (64 -bit) - JOHN MULLEN \& \& PARTNERS PTY LTD
Path: Z:_Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 5:50 PM, Page: 1

」 M P
SPACE GASS 14.12 (64-bit) - JOHN MULLEN \&\& PARTNERS PTY LTD
Path: Z:\ Projects $\backslash 4981-01$ Great Western \ldots. \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 5:51 PM, Page: 1

 2 B12 $=150 \mathrm{PFC}$
3 SC2 $=150 \mathrm{PFC}$
4 B1=180 UB 18.1
5 Column $=700$ diax12 CHS
6 B10 $=75 * 50 * 4$ RHS
7 B3 $=125 * 75 * 8$ UA
9
B3 $=125 * 75 * 8$ UA ↔ 9 B3 $=125 * 75 * 8 \mathrm{UA}$
$10 \mathrm{~S} 1=75 * 8 \mathrm{EA}$

15 SC4 $=100$ PFC
16 DB1 $=75 * 4$ SHS
$16 \mathrm{DB} 1=75 * 4$ SHS
$18 \mathrm{~B} 3=125 * 75 * 8 \mathrm{UA}$

me

SPACE GASS 14.12 (64 -bit) - JOHN MULLEN \&\& PARTNERS PTY LTD
Path: Z:_Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood
Load cases 10,15,16
(1) Strength
$15(\mathrm{SW}) 0.9 \mathrm{G}+\mathrm{Wu}(\mathrm{W}-\mathrm{E})$-Elevated Structure
$16(\mathrm{SW}) 1.2 \mathrm{G}+\mathrm{Wu}(\mathrm{W}-\mathrm{E})$-Elevated Structure
Δ
」 M P
SPACE GASS 14.12 (64 -bit) - John MULLEN \&\& PARTNERS PTY LTD
Path: Z: Z: Projects 4981-01 Great Western \ldots...Computations \Model Huntingwood
Path
Load cases 10,15,16
(1) Strength
Axial + Bending Stress:
$\square 235.29 \mathrm{MPa}$
211.08 MPa
$\square 186.88 \mathrm{MPa}$
$\square 162.67 \mathrm{MPa}$
$\square 138.46 \mathrm{MPa}$
$\square 114.25 \mathrm{MPa}$
$\square 90.05 \mathrm{MPa}$
65.84 MPa
$\square 1.63 \mathrm{MPa}$
$\square 17.43 \mathrm{MPa}$
-6.78 MPa
-30.99 MPa
-30.99 MPa
-55.19 MPa
-79.40 MPa
-103.61 MPa
-
$-127.82 \mathrm{MPa}$
$-152.02 \mathrm{MPa}$
-176.23 MPa
edW t9'tzz-
Viewpoint (-53,45)
\cdots SPACE GARS 14.12 (64 -bit) - JOHN MULLEN $\& \&$ PARTNERS TY LTD Path: Z:_ Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 6:00 PM, Page: 1 Envelope $=$ Load Cases $10,15,16$

-16M36 4.6/S BOLTS
$\mathrm{T}^{*}=\mathrm{C}^{*}=833 / 0.6=1388 \mathrm{kN}$ consider 6 bolts therefore $1388 / 6=231 \mathrm{kN}$ per bolts

Axial Tension capacity of M36 bolts $4.6 / \mathrm{S}=261 \mathrm{kN}$

 Shear Capacity $=151 \mathrm{kN}$By inspection, baseplate thickness is adequate. The stiffener helps to reduced the thickness required.
$\mathrm{M}^{*}=833 \mathrm{kN}-\mathrm{m}$
」 M P
SPACE GASS 14.12 (64 -bit) - JOHN MULLEN \& \& PARTNERS PTY LTD
Path: Z: \quad Projects $\backslash 4981-01$ Great Western ... \Computations \backslash Model Huntingwood Designer: Date: Wednesday, March 20, 2024 6:09 PM, Page: 1 Designer: Date:
Envelope $=$ Load Cases $10,15,16$ Envelope $=$ Load Cases
and Members 2 10,15,16

> $\mathrm{M}^{*}=258 \mathrm{kN}-\mathrm{m}$
Axial Tension capacity of M24 bolts 8.8/S $=234 \mathrm{kN}$
Shear Capacity $=133 \mathrm{kN}$
Bending on Cap plate $=86 \times .070=6.02 \mathrm{kN}-\mathrm{m}$

COMPARISON OF AS1170.2:1989 and AS1170.2:2021
3.2.2 Derivation of design gust wind speed $\left(V_{v}\right)$. The design gust wind speeds $\left(V_{z}\right)$ shall be determined from the appropriate basic wind speed shown in Figure 3.2.2 for the appropriate limit state given by Equation 3.2.2.

$$
\begin{equation*}
V_{z}=V M_{(2, \text { ati })} M_{\mathrm{s}} M_{\mathrm{t}} M_{\mathrm{i}} \tag{3.2.2}
\end{equation*}
$$

where
$V_{z}=$ the design gust wind speed at height z, in metres per second
$V=$ the basic wind speed, $\left(V_{\mathrm{u}}\right),\left(V_{\mathrm{p}}\right)$ and $\left(V_{\mathrm{s}}\right)$ (see Figure 3.2.2), in metres per second
$M_{(\mathrm{z}, \mathrm{cat})}=$ a gust wind speed multiplier for a terrain category at height z for upwind distance of at least $\left(2500+x_{\mathrm{i}}\right) \mathrm{m}$ (see also Clause 3.2.6, Tables 3.2.5.1 and 3.2.5.2)
$M_{\mathrm{s}} \quad=\quad$ a shielding multiplier (see Table 3.2.7)
$M_{\mathrm{t}} \quad=\quad$ a topographic multiplier for gust wind speeds (see Table 3.2.8)
$M_{\mathrm{i}} \quad=$ a structure importance multiplier (see Table 3.2.9).

1989

STRESS DESIGN - REGIONS A AND B ONLY SERVICEABILITY LIMIT STATE DESIGN ALL REGIONS

Height (z)	Multiplier $\left(\boldsymbol{M}_{(z, \text { cat })}\right)$			
	Terrain Category 1	Terrain Category 2	Terrain Category 3	Terrain Category 4
	0.99	0.85	0.75	0.75
	1.05	0.91	0.75	0.75
	1.12	1.00	0.83	0.75
15	1.16	1.05	0.89	0.75
20	1.19	1.08	0.94	0.75
30	1.22	1.12	1.00	0.80
40	1.24	1.16	1.04	0.85
50	1.25	1.18	1.07	0.90
75	1.27	1.22	1.12	0.98
100	1.29	1.24	1.16	1.03
150	1.31	1.27	1.21	1.11
200	1.32	1.29	1.24	1.16
250	1.34	1.31	1.27	1.20
300	1.35	1.32	1.29	1.23
400	1.37	1.35	1.32	1.28
500	1.38	1.37	1.35	1.31

Table 4.1 - Terrain/height multipliers for gust wind speeds in fully developed terrains - All regions except A0

$\begin{gathered} \text { Height (z) } \\ (\mathrm{m}) \\ \hline \end{gathered}$		Terrain/height multiplier ($M_{z, \text { cat }}$)			
	Terrain	Terrain	Terrain	Terrain	Terrain
	Category 1	Category 2	Category 2.5	Category 3	Category 4
≤ 3	0.97	0.91	0.87	0.83	0.75
5	1.01	0.91	0.87	0.83	0.75
10	1.08	1.00	0.92	0.83	0.75
15	1.12	1.05	0.97	0.89	0.75
20	1.14	1.08	1.01	0.94	0.75
30	1.18	1.12	1.06	1.00	0.80
40	1.21	1.16	1.10	1.04	0.85
50	1.23	1.18	1.13	1.07	0.90
75	1.27	1.22	1.17	1.12	0.98
100	1.31	1.24	1.20	1.16	1.03
150	1.36	1.27	1.24	1.21	1.11
200	1.39	1.29	1.27	1.24	1.16
NOTE 1 In Region A0, use $M_{\text {z,cat } 2}$ for all $z \leq 100 \mathrm{~m}$ in all terrains. For $100 \mathrm{~m}<z \leq 200 \dot{\mathrm{~m}}$, take $M_{\mathrm{z}, \text { cat }}$ as 1.24 i all terrains.					
NOTE 2 For all other regions, for intermediate terrains use linear interpolation. NOTE 3 For intermediate values of height z, use linear interpolation.					

HUNTINGWOOD, GREAT WESTERN HIGHWAY
Project: EXISTING ADVERTISING SIGNAGE STRUCTURE

COMPUTATION SHEET

Designer:
EL
Date: 18.03.2024 Project No: 498101

Project Leader: EL
Reviewer: MB
Date: 20.03.2024 Sheet

HUNT Project: EXIST	HUNTINGWOOD, GREAT WESTERN HIGHWAY EXISTING ADVERTISING SIGNAGE STRUCTURE			
Designer: EL	Date: 18	03.2024	Project No: 498101	
Project Leader: EL	Reviewer:	MB	Date: 20.03.2024 Sheet	of

COMPUTATION SHEET

Appendices

Appendix $1 \quad$ Point Cloud Survey Report

veris

Huntingwood Billboard Scan

PROJECT METADATA REPORT

Client reference: 203791

DEVELOP
WITH
CONFIDENCE ${ }^{\text {Tw }}$

Contents

1. Overview 2
2. Intended use of data 3
3. Survey Datum and Spatial Accuracy 3
4. Limitations 3
5. Supplied digital data 4
6. Closing 5

veris

1. Overview

Veris Australia were contracted to perform a 3D laser scanning of the billboard located in Huntingwood

The 3D laser scanning survey was performed by the Veris Digital \& Spatial team equipped with a Leica RTC360 scanner. Approx 10 scans were required to achieve maximum coverage

2. Intended use of data

The intent of the survey is to facilitate engineering design and inform new equipment installation

3. Survey Datum and Spatial Accuracy

All survey data has been provided on an assumed datum only.
Accuracy of the terrestrial laser scanning survey and derived datasets is to the order of $\pm 5 \mathrm{~mm}$, with global accuracy $\pm 20 \mathrm{~mm}$.

4. Limitations

Due to the nature of 3D laser scanning, all objects within line-of-sight of the instrument are captured. The nature of the structure means that some elements may be obscured by other structural objects. Best efforts have been made to ensure maximum data coverage

This survey dataset is for engineering purposes only.

veris

5. Supplied digital data

These deliverables have been supplied

5.1. Autodesk Recap

A copy of scan data has been supplied as an Autodesk RCP. Recap RCS format point clouds enable users to directly interrogate laser scan data in a 3D environment across all Autodesk products (AutoCAD, Revit, Navisworks).

Figure 1: Example of Autodesk Recap datasets as viewed in Recap

5.2. Revit2024 model

A 3D digital representation of the structure used as a reference for design, architecture, and asset management.

6. Closing

On behalf of Veris Australia I would like to thank Ooh! Media for the opportunity to work with you on this project,

Yours sincerely,

Veris Australia

Ben Johnston

Digital and Spatial Lead NSW / ACT

Appendix 2 Structural Condition Report

GARCADIS

ADVERTISING SIGNAGE STRUCTURE

Great Western Highway, Huntingwood - Inbound \& Outbound

Structural Condition Report

14 JULY 2023

CONTACT

CHRIS SLATER

Senior Engineer
T 0289073942
M 0410630972
E chris.slater@arcadis.com

Arcadis
Level 16, 580 George Street
Sydney NSW 2000

OOH! MEDIA
 ADVERTISING SIGNAGE STRUCTURE

Great Western Highway, Huntingwood Inbound \& Outbound - Structural Condition Report

Author	Chris Slater
Checker	Michael Cheng
Approver	Michael Cheng
Report No	30110779
Date	$14 / 07 / 2023$
Revision Text	1

This report has been prepared for oOh! Media in accordance with the terms and conditions of appointment for TfNSW Large Format Inspection Reports, dated 13/10/2021. Arcadis Australia Pacific Pty Limited (ABN 76104485 289) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

REVISIONS

Revision	Date	Description	Prepared by	Approved by
1	$14 / 07 / 23$	First issue	CS	MC

\qquad
\qquad
\qquad

CONTENTS

1 INTRODUCTION 1
1.1 General 1
1.2 Site Visit 1
2 DESCRIPTION 2
3 STRUCTURAL CONDITION \& OBSERVATIONS 5
4 RECOMMENDATIONS 11

1 INTRODUCTION

1.1 General

Arcadis Australia Pacific Pty Ltd (Arcadis) was engaged by oOh! Media to conduct a structural condition report on the monopole advertising signage structure located on the southern side of the Great Western Highway, Huntingwood.

Figure 1 Locality Plan

1.2 Site Visit

Chris Slater of Arcadis visited the site on Thursday $13^{\text {th }}$ July 2023. The purpose of this visit was to undertake a detailed inspection of the advertising signage structure from all accessible areas. The inspection was achieved using a safety harness and working at height precautions in accordance with Work Health and Safety Regulations 2017.

The weather at the time of the inspection was fine and sunny.
During this visit, information and photographs were recorded regarding the condition of the fixing components, framing members, protective surfacing, and other relevant material with respect to the performance of the signage structure. All caption comments are indicative, with the true condition record being the photographic record.

2 DESCRIPTION

The signage structure is commonly referred to as a double sided ' V ' shaped front lit 'Supersite' monopole, having a nominal display size of 12.660 m long $\times 3.350 \mathrm{~m}$ high.
The signage structure comprises a freestanding galvanised monopole with a flanged connection for attaching a galvanised torsion beam. A series of trussed frames (6 in total) are attached to the top of the torsion beam. These trussed frames are a fully welded assembly comprising channels with circular hollow section members for bracing.

Photo 1 - Monopole to torsion beam flanged connection.

Photo 2 - Typical trussed frame connected to top of torsion beam.

Cantilevering from the end of each trussed frame is a twin-level gantry. Like the trussed frames, the gantry elements (channels with angle members for bracing) are fully welded, and support and upper and lower catwalk.

Both catwalks are nominally 600 mm wide, and are equipped with compliant handrails and kick rails, and have a permanent fixed ladder located at each end, providing access between the gantry levels. The ends of the upper catwalk are fitted with selfclosing gates that allow the user to pass from the fixed ladder onto the catwalk, with the gate closing behind them, thus providing adequate fall protection.
Three horizontal rails ($75 \times 50 \mathrm{RHS}$) are connected to the front face of each gantry frame via fully welded seating angles. These rails support the respective sign faces, which comprise folded sheet metal segments, commonly referred to as `signage pans`.

The `signage pans` are separate entities, nominally 1200 mm wide for the full height of the advertising sign, providing a flat backing for the vinyl advertising skin to be attached. As mentioned previously the `signage pans` are fabricated from sheet metal that has been folded to provide rigidity/stiffness, together with additional spot welded girts at the horizontal rail locations. These elements are fixed to the horizontal rails via angle brackets, and `Tek` screws (refer Fig. 6-7).

The signage structure is also equipped with four cantilever floodlights that illuminate the front of the advertising sign. These lights are solar powered and have four solar panels fixed to the trussed frames (refer Fig. 6-8).

Access to the lower catwalk is gained by a fixed vertical ladder attached to the monopole. The vertical ladder is fitted with a 'Ladsaf' cable vertical safety system that has been inspected and tagged.

Photo 3 - Vertical access ladder equipped with 'Ladsaf'.

Photo 4 - 'Ladsaf' installation and service record affixed to the structure.
During the inspection no other obvious defects that might warrant further investigation were noticed. However, that does not preclude the possibility that other less obvious defects may exist and were concealed.

For the intent of this report Arcadis has assumed that the existing signage structure, and the additional solar panel support framing, has been designed in accordance with relevant Australian codes/standards, and is structurally adequate for its purpose.

Photo 5-General view of advertising signage structure.

3 STRUCTURAL CONDITION \& OBSERVATIONS

Generally, the signage structure, including the monopole and superstructure, is in a satisfactory condition (refer photos 6 to 9).

However, there are some issues that need to be addressed.
The issues observed were:

- Minor surface corrosion to knee rail welded connection.

Photo 10 - Minor surface corrosion to welded connection.

Photo 11 - Minor surface corrosion to welded connection.

- Minor surface corrosion to self-closing gate framing, and vertical ladder support framing.

Photo 12 - Surface corrosion to self-closing gate framing.

Photo 13 - Surface corrosion to vertical ladder support framing.

- Minor surface corrosion to signage pan.

Photo 14 - Minor surface corrosion to signage pan.

- Corroding shackle bolt and wire grip 'U' bolts.

Photo 15 - Corroding shackle bolt.

Photo 16 - Corroding wire grip 'U' bolts.

- Deformation/buckling of the signage pans located at the top right of the west-facing sign, and both top and bottom right of the east-facing sign which has likely resulted from a combination of the cantilever distance of the pan from the horizontal rail, and the amount of tension applied to the ratchet straps during the vinyl advertising skin installation. The deformation observed is not structurally significant, although it may impact on the appearance of the advertisement.

Photo 17 - Deformation to signage pan.

Photo 18 - Deformation to signage pan.

4 RECOMMENDATIONS

We would recommend that the surface corrosion be wire brush cleaned and treated with a proprietary cold galvanising paint at the next scheduled maintenance programme, to avoid further corrosion developing and potentially more costly remediation. This may involve the complete replacement of bolts.

The deformed/damaged signage pans do not affect the overall structural performance of the signage structure. However, should the aesthetics of the advertisement be unacceptable, the signage pans could either be repaired or replaced, and a permanent strut member introduced to prevent the signage pan buckling under the tension load of the ratchet strap.

Arcadis would recommend that the signage structure be re-inspected every three (3) years from the date of this report.

